Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs

نویسندگان

  • Xiulong Shen
  • David R Corey
چکیده

RNA plays a central role in the expression of all genes. Because any sequence within RNA can be recognized by complementary base pairing, synthetic oligonucleotides and oligonucleotide mimics offer a general strategy for controlling processes that affect disease. The two primary antisense approaches for regulating expression through recognition of cellular RNAs are single-stranded antisense oligonucleotides and duplex RNAs. This review will discuss the chemical modifications and molecular mechanisms that make synthetic nucleic acid drugs possible. Lessons learned from recent clinical trials will be summarized. Ongoing clinical trials are likely to decisively test the adequacy of our current generation of antisense nucleic acid technologies and highlight areas where more basic research is needed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developmental defects by antisense-mediated inactivation of micro-RNAs 2 and 13 in Drosophila and the identi®cation of putative target genes

Micro-RNAs are a class of small non-coding regulatory RNAs that impair translation by imperfect base pairing to mRNAs. For analysis of their cellular function we injected different miRNA-speci®c DNA antisense oligonucleotides in Drosophila embryos. In four cases we observed severe interference with normal development, one had a moderate impact and six oligonucleotides did not cause detectable p...

متن کامل

Selection and characterization of RNAs that relieve transcriptional interference in Escherichia coli.

Oligonucleotide-directed triple helix formation offers a method for duplex DNA recognition, and has been proposed as an approach to the rational design of gene-specific repressors. Indeed, certain RNA and DNA oligonucleotides have previously been shown to bind duplex DNA and repress in vitro transcription by occluding the binding of transcription factors or RNA polymerase at target genes. While...

متن کامل

Developmental defects by antisense-mediated inactivation of micro-RNAs 2 and 13 in Drosophila and the identification of putative target genes.

Micro-RNAs are a class of small non-coding regulatory RNAs that impair translation by imperfect base pairing to mRNAs. For analysis of their cellular function we injected different miRNA-specific DNA antisense oligonucleotides in Drosophila embryos. In four cases we observed severe interference with normal development, one had a moderate impact and six oligonucleotides did not cause detectable ...

متن کامل

Restoration of correct splicing in IVSI-110 mutation of β-globin gene with antisense oligonucleotides: implications and applications in functional assay development

Objective(s): The use of antisense oligonucleotides (AOs) to restore normal splicing by blocking the recognition of aberrant splice sites by the spliceosome represents an innovative means of potentially controlling certain inherited disorders affected by aberrant splicing. Selection of the appropriate target site is essential in the success of an AO therapy. In this study, in search for a splic...

متن کامل

Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems.

Short interfering RNAs (siRNAs) are double-stranded RNAs of approximately 21-25 nucleotides that have been shown to function as key intermediaries in triggering sequence-specific RNA degradation during posttranscriptional gene silencing in plants and RNA interference in invertebrates. siRNAs have a characteristic structure, with 5'-phosphate/3'-hydroxyl ends and a 2-base 3' overhang on each str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2018